Are you ready to talk?

How Topology Optimization Adds Innovation for 3D-printed Products

Table of contents

This article focuses on the possibilities for increasing innovation with Topology Optimization for Additive Manufactured Parts. Topology Optimization provides freedom to create unique structures that are a perfect fit for that given structural behaviour.

 Tosca_Topology_Optimization_process

Deviation In estimation of Structural performance for 3D-printed Products

As the quality is going up, and costs for 3D printed parts are going down, more and more companies are adopting 3D printing in plastics and metals, not only for nice mock-ups and visual prototypes, but also for short-series produced parts. This brings a nice challenge to the development loop, because this means that products that are structurally loaded parts, should be validated someway, to make sure the structural performance of the 3D printed parts is as expected. Simply assuming isotropic material behaviour suddenly appears to be an assumption which is too much off, to say anything about the structural behaviour.

For plastic 3d printed parts, depending on the technology used, that means that most of the time, the products will fail at the transition of the layers at how the product is build-up, particularly at bending loadings that are perpendicular to the build-up direction.

For steel 3d printed parts, the printing process itself is contributing to the deviation of the accuracy, since heat is added due to the laser melting process. Also residual stresses are brought into the product by this thermal process and cooling down of the product.

How to Utilize the Design Freedom for 3d Printed Parts Under Structural Loading?

Most of you will acknowledge that 3D printing has less demands on the produce-ability of the actual part. So how do we design a 3D printed part specifically tailored for a given loading and boundary conditions? Luckily this is not depending on the creativeness of the average mechanical engineer, because if you would use known techniques, you most likely end up with parts that are square, circular or a combination of those shapes. This is where Topology Optimization comes in. 

What is Topology Optimization?

Topology Optimization is a mathematical approach that optimizes material layout within a given design space, for a given set of loads and boundary conditions such that the resulting layout meets a prescribed set of performance targets. Using topology optimization, engineers can find the best concept design that meets the design requirements. Source Wikipedia.

Simuleon provides SIMULIA Tosca software in Belgium, Netherlands and Luxemburg , which is Topology Optimization Technology that can be used with many commercial FEA software, and of course SIMULIA Abaqus as well. And to add to this; Topology Optimization can’t be used without FEA software, since the FEA software brings the structural knowledge to the equations.

Topology_Optimization_Process

Topology Optimization is the non-parameter based optimization technique which removes material from the unloaded areas of the part, and creates structures that guide the load in the structure to the applied boundary conditions. With this technique you can create shapes that are an optimal fit for that given loading and boundary conditions. Topology Optimization can be used for Structural Analysis as well as CFD Analysis.TOSCA_Topology_Optimization_-_Windmillhub

 Some examples for Structural Topology Optimization:

  • Maximize stiffness with volume constraint
  • Maximize stiffness with frequency constraints
  • Minimize displacement with volume constraint
  • Minimize volume with displacement constraint
  • Minimize reaction or internal force
  • Maximize first eigenfrequencies
  • Maximize the band gap around an eigenfrequency
  • Restrict difference between two displacements

 

Lattice Structures to Dramatically Reduce Weight Even More Whilst Remaining Stiffness and Structural Performance

As the software industry and Dassault Systemes is rapidly picking up new trends, we see a large interest in the creation of Lattice Structures. These Lattice Structures are a logical follow-up on the model that was optimized with Tosca Topology Optimization to create even more weight reduction. So the optimized structure, which is normally still solid inside, can now be even reduced in its weight by the application of Lattice Structures. These structures are little beam-structures that are created on the sides of the mesh elements, which ideally are also directed in the loading direction or path. These techniques even provide more dramatic weight reductions, whilst remaining stiffness and structural performance. This technology is expected to be included in SIMULIA Tosca 2016 which will be released end of this year/begin of 2016.

Please view the interesting video below from Boeing with more information about lattice structures in general.

 Lettice_Structure_-_Video

So in Summary, How Does Topology Optimization Contribute to Innovation for Additive Manufactured Products?

By applying clever techniques that create unique structures which are the best fit within the given boundary conditions, loadings and restrictions, the most innovative products and structures can be created. All the unnecessary bandwidth and excessive material is removed, and since FEA is already in the loop, the need for large numbers of physical prototypes has also been reduced at the same time.

Need to speak to an FEA expert?

Our simulation team are on-hand to provide tailored guidance and support with a deep knowledge of the full SIMULIA portfolio. Reach out to talk to an expert today.

Related Blogs

Keep reading for detailed technical information and updates here on our Expert Insights blog. We regularly publish on topics such as advanced simulation, digital technology, and product lifecycle management.

Advanced Simulation Icon Advanced Simulation Icon Advanced Simulation Engineering icon Engineering icon Engineering PLM icon PLM icon PLM

Design and the Medici Effect: How 3DEXPERIENCE is redefining product development

Discover how the 3DEXPERIENCE platform redefines product development by enabling interdisciplinary collaboration and innovation, inspired by the Medici Effect.
MBSE icon MBSE icon MBSE

Reflections from the Dassault Systèmes MBSE Forum: A Day of Innovation and Insight

Discover key takeaways from the Dassault Systèmes MBSE Forum, including insights on SysML, model-centric design, and the future of engineering. Summarized Main Point: The Dassault Systèmes MBSE Forum highlighted the growing influence of Model-Based Systems Engineering (MBSE), emphasizing the benefits of a model-centric approach, the potential of SysML v2, and the importance of industry-academia collaboration in preparing future engineers.
Advanced Simulation Icon Advanced Simulation Icon Advanced Simulation

Advanced Simulation and Optimisation in Modern Engineering Design: Leveraging Simulia's CST Studio Suite and Isight

Discover how integrating CST Studio Suite and Isight enables advanced co-simulation and optimisation in modern engineering design. Learn how this approach automates electromagnetic analysis, enhances design accuracy, and streamlines optimisation of components like ferrite chokes for optimal performance.

Want to receive more content like this?

Sign up to receive a weekly roundup of Expert insights as they are published...

  • Related news & articles straight to your inbox
  • Hints, tips & how-tos
  • Thought leadership articles